Biclique Edge Cover Graphs and Confluent Drawings

نویسندگان

  • Michael Hirsch
  • Henk Meijer
  • David Rappaport
چکیده

Confluent drawing is a technique that allows some non-planar graphs to be visualized in a planar way. This approach merges edges together, drawing groups of them as single tracks, similar to train tracks. In the general case, producing confluent drawings automatically has proven quite difficult. We introduce the biclique edge cover graph that represents a graph G as an interconnected set of cliques and bicliques. We do this in such a way as to permit a straightforward transformation to a confluent drawing of G. Our result is a new sufficient condition for confluent planarity and an additional algorithmic approach for generating confluent drawings. We give some experimental results gauging the performance of existing confluent drawing heuristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Graphs with Few Complete Bipartite Subgraphs

We consider computational problems on covering graphs with bicliques (complete bipartite subgraphs). Given a graph and an integer k, the biclique cover problem asks whether the edge-set of the graph can be covered with at most k bicliques; the biclique partition problem is defined similarly with the additional condition that the bicliques are required to be mutually edge-disjoint. The biclique ...

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

Approximating Clique and Biclique Problems

We present here 2-approximation algorithms for several node deletion and edge deletion biclique problems and for an edge deletion clique problem. The biclique problem is to find a node induced subgraph that is bipartite and complete. The objective is to minimize the total weight of nodes or edges deleted so that the remaining subgraph is bipartite complete. Several variants of the biclique prob...

متن کامل

Chromatic characterization of biclique covers

A biclique B of a simple graph G is the edge-set of a complete bipartite subgraph of G. A biclique cover of G is a collection of bicliques covering the edge-set of G. Given a graph G, we will study the following problem: find the minimum number of bicliques which cover the edge-set of G. This problem will be called the minimum biclique cover problem (MBC). First, we will define the families of ...

متن کامل

Delta-Confluent Drawings

We generalize the tree-confluent graphs to a broader class of graphs called ∆-confluent graphs. This class of graphs and distancehereditary graphs, a well-known class of graphs, coincide. Some results about the visualization of ∆-confluent graphs are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006